Victorian Subtidal Reef Monitoring Program:
Eagle Rock Marine Sanctuary, July 2015

Matt Edmunds

Australian Marine Ecology Pty. Ltd.
July 2015
Executive summary

Shallow reef habitats cover extensive areas along the Victorian coast and are dominated by seaweeds, mobile invertebrates and fishes. These reefs are known for their high biological complexity, species diversity and productivity. They also have significant economic value through commercial and recreational fishing, diving and other tourism activities. To effectively manage and conserve these important and biologically rich habitats, the Victorian Government has established a long-term Subtidal Reef Monitoring Program (SRMP). Over time the SRMP will provide information on the status of Victorian reef flora and fauna and determine the nature and magnitude of trends in species populations and species diversity through time.

This report describes the monitoring of the Eagle Rock Marine Sanctuary (MS). There were seven surveys, from 2003 to 2015, involving two sites, inside and outside the MS.

This report aims to provide:

- general descriptions of the biological communities and species populations at each monitoring site and any changes over the monitoring period;
- an identification of any unusual biological phenomena such as interesting communities, strong temporal trends and the presence of any introduced species;

The ongoing monitoring surveys used a standardised procedure along a 200 m line divided into four transects. Each transect was surveyed for:

- abundance and size structure of large fishes;
- abundance of cryptic fishes and benthic invertebrates;
- percentage cover of macroalgae;
- abundance of a string kelp, *Macrocystis pyrifera*, when present; and
- abundance of manufactured debris.

Key observations during the monitoring program were:

- There was a much higher cover of the dominant canopy species, crayweed *Phyllospora comosa*, outside the Sanctuary with a decline to similar levels inside the sanctuary in 2013 and 2015.
- The cover of crustose coralline algae is variable inside the Sanctuary and was relatively low in 2005 and 2015.
- There was considerable variation between surveys in the abundances of fleshy thallose red algal species, however the total thallose red algal abundance was higher inside the Sanctuary from 2011 to 2015.
Invertebrate abundances were generally low and variable, with the two most abundant species being the periwinkle *Turbo undulatus* and blacklip abalone *Haliotis rubra*. Both species peaked in abundance in 2009.

The fish abundance and diversity was generally low and variable at both monitoring sites. There were no distinctive changes or trends in abundances or sizes over time. Few fish were observed during the 2015 survey which was likely to have been related to the persistent strong swell conditions from April to July 2015.

There were no major shifts in community structure attributable to climate change.

There were no marine pest species observed.

There was no manufactured debris observed.
Contents

1 Introduction ...1
 1.1 Subtidal Reef Ecosystems of Victoria ...1
 1.2 Subtidal Reef Monitoring Program ..6
 1.2.1 Objectives ..6
 1.2.2 Monitoring Protocols and Locations ...8
 1.3 Monitoring Objectives at Eagle Rock Marine Sanctuary ...8

2 Methods ..9
 2.1 Site Selection and Survey Times ..9
 2.2 Census Method ..11
 2.2.1 General Description ...11
 2.2.2 Method 1 – Mobile Fishes and Cephalopods ... 11
 2.2.3 Method 2 – Invertebrates and Cryptic Fishes ... 12
 2.2.4 Method 2b – Manufactured Debris ... 12
 2.2.5 Method 3 – Macroalgae .. 12
 2.2.6 Method 4 – Macrocystis ... 13
 2.2.7 Method 5 – Fish Stereo Video ... 14
 2.2.8 Method 0 – Off-Transect Sightings ... 15
 2.3 Data Analysis – Condition indicators ...19
 2.3.1 Approach ...19
 2.3.2 Biodiversity ...20
 2.3.3 Ecosystem Functional Components ..21
 2.3.4 Introduced Species ..22
 2.3.5 Climate Change ...23
 2.3.6 Fishing ..24

3 Results ...27
 3.1 Macroalgae ...27
 3.2 Invertebrates ..34
 3.3 Fishes ..39
 3.4 Ecosystem Functional Components ...45
 3.4.1 Habitat and Production ...45
 3.4.2 Sediment Cover ..45
 3.4.3 Invertebrate Groups ..45
 3.4.4 Fish Groups ...45
 3.5 Introduced Species ...53
 3.6 Climate Change ..53
 3.6.1 Species composition ..53
 3.6.2 *Macrocystis pyrifera* ..53
 3.6.3 *Durvillaea potatorum* ...53
 3.6.4 *Centrostephanus rodgersii* ..53
 3.7 Fishing ..56
 3.7.1 Abalone ...56
 3.7.2 Rock Lobster ...56
 3.7.3 Fishes ...56
 3.8 Manufactured Debris ...56

4 Acknowledgements ...60

5 References ..60
Index of Figures

Figure 1.1. Examples of common macroalgae in the Central Victoria bioregion. ..3
Figure 1.2. Examples of reef invertebrate species and cryptic fish in the Central Victoria bioregion.4
Figure 1.3. Examples of reef fishes in the Central Victoria bioregion. ...5
Figure 1.4. An example plot depicting change in an environmental, population or community variable over time (days, months or years) and potential patterns from isolated observations.7
Figure 2.1. Eagle Rock Marine Sanctuary and the positions of survey sites and transects - yellow dots and lines (base map provided by NearMap). ...10
Figure 2.2. The cover of macrophytes is measured by the number of points intersecting each species on the quadrat grid. ...13
Figure 3.1. Three-dimensional nMDS plot of algal assemblage structure at Eagle Rock MS. Black filled shapes denote the first survey time. Kruskal stress = 0.05 ...28
Figure 3.2. Control charts of algal assemblage structure in the Eagle Rock MS ..29
Figure 3.3. Algal species diversity indicators for MNP and reference sites at Eagle Rock MS30
Figure 3.4. Percent cover of dominant algal species inside and outside the Eagle Rock MS31
Figure 3.4 (continued). Percent cover of dominant algal species inside and outside the Eagle Rock MS ..32
Figure 3.5. Three-dimensional nMDS plot of invertebrate assemblage structure at Eagle Rock MS. Black, filled shapes denote the first survey time. Kruskal stress = 0.05 ...35
Figure 3.6. Control charts of invertebrate assemblage structure at Eagle Rock MS36
Figure 3.7. Invertebrate species diversity indicators for MNP and reference sites at Eagle Rock MS37
Figure 3.8. Density of invertebrate species inside and outside the Eagle Rock MS38
Figure 3.9. Three-dimensional nMDS plot of fish assemblage structure at Eagle Rock MS. Black, filled shapes denote the first survey time. Kruskal stress = 0.03 ...40
Figure 3.10. Control charts of fish assemblage structure at Eagle Rock MS ..41
Figure 3.11. Fish species diversity indicators for MNP and reference areas at Eagle Rock MS42
Figure 3.12. Density of fish species inside and outside the Eagle Rock MS ..43
Figure 3.12 (continued). Density of fish species inside and outside the Eagle Rock MS44
Figure 3.13. Percent cover of macrophyte functional groups inside and outside the Eagle Rock MS 46
Figure 3.13 (continued). Percent cover of macrophyte functional groups inside and outside the Eagle Rock MS ..47
Figure 3.14. Sediment functional group percent cover inside and outside the Eagle Rock MS48
Figure 3.15. Invertebrate functional group densities inside and outside the Eagle Rock MS49
Figure 3.15 (continued). Invertebrate functional group densities inside and outside the Eagle Rock MS ..50
Figure 3.16. Fish functional group density inside and outside the Eagle Rock MS51
Figure 3.16 (continued). Fish functional group density inside and outside the Eagle Rock MS52
Figure 3.17. Abundance and species richness of cold water, Maugean algal species inside and outside the Eagle Rock MS ..54
Figure 3.20. Size spectrum parameters for fished fish species inside and outside the Eagle Rock MS ..58
Figure 3.21. Mean size of blue-throat wrasse Notolabrus tetricus inside and outside the Eagle Rock MS ..59
Index of Tables

Table 2.1. Subtidal reef monitoring sites at Eagle Rock Marine Sanctuary ... 9
Table 2.2. Subtidal reef monitoring survey times in Eagle Rock ... 9
Table 2.3. Mobile fishes and cephalopods (Method 1) taxa commonly censused along the coast of Victoria ... 15
Table 2.4. Invertebrate and cryptic fish (Method 2) taxa commonly censused along the coast of Victoria ... 16
Table 2.5. Manufactured debris (Method 2b) censused in Victoria .. 16
Table 2.6. Common macroalgae and seagrass (Method 3) taxa censused along the coast of Victoria 17
Table 2.6 (continued). Common macroalgae and seagrass (Method 3) taxa censused along the coast of Victoria .. 18
Table 2.7. Fish length-weight conversion parameters used to calculate the biomass of fished species. Where parameters were unavailable, parameters for a similar species were applied 26
1 Introduction

1.1 Subtidal Reef Ecosystems of Victoria

Shallow reef habitats cover extensive areas along the Victorian coast. The majority of reefs in this area are exposed to strong winds, currents and large swell. A prominent biological component of Victorian shallow reefs is kelp and other seaweeds (Figure 1.1). Large species, such as the common kelp *Ecklonia radiata* and crayweed *Phyllospora comosa*, are usually present along the open coast in dense stands. The production rates of dense seaweed beds are equivalent to the most productive habitats in the world, including grasslands and seagrass beds, with approximately 2 kg of plant material produced per square metre of seafloor per year. These stands typically have 10-30 kg of plant material per square metre. The biomass of seaweeds is substantially greater where giant species such as string kelp *Macrocystis pyriforma* and bull kelp *Durvillaea potatorum* occur.

Seaweeds provide important habitat structure for other organisms on the reef. This habitat structure varies considerably, depending on the type of seaweed species present. Tall vertical structures in the water column are formed by *M. pyriforma*, which sometimes forms a dense layer of fronds floating on the water surface. Other species with large, stalk-like stipes, such as *E. radiata*, *P. comosa* and *D. potatorum*, form a canopy 0.5-2 m above the rocky substratum. Lower layers of structure are formed by: foliose macroalgae typically 10-30 cm high, such as the green *Caulerpa* and the red *Plocamium* species; turfs (to 10 cm high) of red algae species, such as *Pterocladia capillacea*; and hard encrusting layers of pink coralline algae. The nature and composition of these structural layers varies considerably within and between reefs, depending on the biogeographic region, depth, exposure to swell and waves, currents, temperature range, water clarity and the presence or absence of deposited sand.

Grazing and predatory motile invertebrates are prominent animal inhabitants of the reef (Figure 1.2). Common grazers include blacklip and greenlip abalone *Haliotis rubra* and *Haliotis laevigata*, warrener *Turbo undulatus* and sea urchins *Heliocidaris erythrogramma*, *Holopneustes* spp and *Amblypneustes* spp. These species can influence the growth and survival of habitat forming organisms. For example, sponges and foliose seaweeds are often prevented from growing on encrusting coralline algae surfaces through the grazing actions of abalone and sea urchins. Predatory invertebrates include dogwhelks *Dicathais orbita*, southern rock lobster *Jasus edwardsii*, Maori octopus *Octopus maorum* and a wide variety of sea star species. Other large reef invertebrates include motile filter feeding animals such as feather stars *Comanthus trichoptera* and sessile (attached) species such as sponges, corals, bryozoans, hydroids and ascidians.
Fishes are also a prominent component of reef ecosystems, in terms of both biomass and ecological function (Figure 1.3). Reef fish assemblages include roaming predators such as blue throat wrasse *Notolabrus tetricus*, herbivores such as herring cale *Olisthops cyanomelās*, planktivores such as sea sweep *Scorpius aequipinnis* and picker-feeders such as six-spined leatherjacket *Meuschenia freycineti*. The type and abundance of each fish species varies considerably depending on exposure to swell and waves, depth, currents, reef structure, seaweed habitat structure and many other ecological variables. Many fish species play a substantial ecological role in the functioning and shaping of the ecosystem. For example, the feeding activities of fishes such as scalyfin *Parma victoriae* and magpie morwong *Cheilodactylus nigripes* promote the formation of open algal turf areas, free of larger canopy-forming seaweeds.

Although the biomass and the primary and secondary productivity of shallow reef ecosystems in Victoria are dominated by seaweeds, motile invertebrates and fishes, there are many other important biological components to the reef ecosystem. These include small species of crustaceans and molluscs from 0.1 to 10 mm in size (mesoinvertebrates), occupying various niches as grazers, predators or foragers. At the microscopic level, films of microalgae and bacteria on the reef surface are also important.

Victoria’s shallow reefs are a very important component of the marine environment because of their high biological complexity, species diversity and productivity. Subtidal reef habitats also have important social and cultural values, which incorporate aesthetic, recreational, commercial and historical aspects. Shallow subtidal reefs also have significant economic value, through commercial fishing of reef species such as wrasses, morwong, rock lobster, abalone and sea urchins, as well as recreational fishing, diving and other tourism activities.
Common kelp *Ecklonia radiata*
Crayweed *Phyllospora comosa*
Thallose red algae *Ballia callitricha*
Red coralline algae *Jania rosea*
Green alga *Caulerpa flexilis*
Crabweed *P. comosa* holdfast

Figure 1.1. Examples of common macroalgae in the Central Victoria bioregion.
Southern rock lobster
Jasus edwardsii

Black-lipped abalone *Haliotis rubra*

Feather star *Comanthus trichoptera*

Sea urchin *Heliocidaris erythrogramma*

Red velvet fish
Gnathanacanthus goetzeei

Figure 1.2. Examples of reef invertebrate species and cryptic fish in the Central Victoria bioregion.
Figure 1.3. Examples of reef fishes in the Central Victoria bioregion.
1.2 Subtidal Reef Monitoring Program

1.2.1 Objectives

An important aspect of the management and conservation of Victorian marine natural resources and assets is assessing the condition of the ecosystem and how this changes over time. Combined with an understanding of ecosystem processes, this information can be used to manage any threats or pressures on the environment to ensure ecosystem sustainability.

Consequently, the Victorian Government has established a long-term Subtidal Reef Monitoring Program (SRMP). The primary objective of the SRMP is to provide information on the status of Victorian reef flora and fauna (focussing on macroalgae, macroinvertebrates and fish). This includes monitoring the nature and magnitude of trends in species abundances, species diversity and community structure. This is achieved through regular surveys at locations throughout Victoria, encompassing both representative and unique habitats and communities.

Information from the SRMP allows managers to better understand and interpret long-term changes in the population and community dynamics of Victoria’s reef flora and fauna. As a longer time series of data are collected, the SRMP will allow managers to:

- compare changes in the status of species populations and biological communities among highly protected marine national parks and marine sanctuaries and other Victorian reef areas (e.g. Edgar and Barrett 1997, 1999);

- determine associations among species and among species and environmental parameters (e.g. depth, exposure, reef topography) and assess how these associations vary through space and time (e.g. Edgar et al. 1997; Dayton et al. 1998; Edmunds, Roob and Ferns 2000);

- provide benchmarks for assessing the effectiveness of management actions, in accordance with international best practice for quality environmental management systems (Holling 1978; Meredith 1997); and

- determine the responses of species and communities to unforeseen and unpredictable events such as marine pest invasions, mass mortality events, oil spills, severe storm events and climate change (e.g. Ebeling et al. 1985; Edgar 1998; Roob et al. 2000; Sweatman et al. 2003).

A monitoring survey gives an estimate of population abundance and community structure at a small window in time. Patterns seen in data from periodic surveys are unlikely to exactly match changes in the real populations over time or definitively predict the size and nature of future variation. Plots of changes over time will not exactly match the changes in real populations because changes over shorter time periods and actual minima and maxima may not be
adequately sampled (e.g. Figure 1.4). Furthermore, because the nature and magnitude of environmental variation is different over different time scales, variation over long periods may not be adequately predicted from shorter-term data. Sources of environmental variation can operate at the scale of months (e.g. seasonal variation, recruitment and harvesting), years (e.g. El Niño), decades (e.g. pollution, extreme storm events) or even centuries (e.g. tsunamis, global warming). The monitoring program will begin to adequately reflect average trends and patterns as the surveys continue over longer periods (multiple years to decades). Results of this monitoring need to be interpreted within the context of the monitoring frequency and duration.

Figure 1.4. An example plot depicting change in an environmental, population or community variable over time (days, months or years) and potential patterns from isolated observations.
1.2.2 Monitoring Protocols and Locations

The SRMP uses standardised underwater visual census methods based on an approach developed and applied in Tasmania by Edgar and Barrett (1997). Details of standard operational procedures and quality control protocols for Victoria’s SRMP are described in Edmunds and Hart (2003). The procedures have been added to since that publication.

The SRMP was initiated in May 1998 in the vicinity Port Phillip Heads Marine National Park. In 1999 the SRMP was expanded to reefs in the vicinity of the Bunurong Marine National Park, Phillip Island, Wilsons Promontory Marine National Park and Point Addis Marine National Park. In 2003 and 2004, the Subtidal Reef Monitoring Program was further extended to include Marine National Parks and Marine Sanctuaries throughout Victoria, including the Eagle Rock Marine Sanctuary at Aireys Inlet.

1.3 Monitoring Objectives at Eagle Rock Marine Sanctuary

This report describes the subtidal reef monitoring program at Eagle Rock MS and the results of the seven surveys. The objectives of this report were to:

1. provide an overview of the methods used for the SRMP;
2. provide general descriptions of the biological communities and species populations at each monitoring site over the monitoring period;
3. describe changes and trends that have occurred over the monitoring period;
4. identify any unusual biological phenomena such as interesting or unique communities or species; and
5. identify any introduced species at the monitoring locations.
2 Methods

2.1 Site Selection and Survey Times

Two long-term monitoring sites were established at Eagle Rock Marine Sanctuary on December 2003 (Table 2.1); one site was located inside the Eagle Rock Marine Sanctuary and one site outside the sanctuary boundary. Monitoring sites were located on representative subtidal reef habitat in each area. The sites were first surveyed in December 2003 and have since been surveyed six times; December 2003, April 2005, December 2005, December 2008, January 2011, April 2013 and July 2015 (Table 2.2).

Eagle Rock Marine Sanctuary is a small marine protected area near Fairhaven, southwest of Point Addis in the Central Victorian Bioregion (Figure 2.1). Subtidal reef habitats of basalt and sandstone within the marine sanctuary are patchy and interspersed with large areas of bare sand. Reef habitats are more continuous in some areas but these areas could not be surveyed because of shallow water and prevailing swell conditions. One site, Eagle Rock Inside (Site 3909), was established along the 5 m depth contour over patchy reef and sand close to Eagle Rock. A reference monitoring site, Eagle Rock Outside (Site 3910), was located on similar, but more continuous reef habitat outside the eastern boundary of the sanctuary. This site was along the 7 m depth contour (Figure 2.1).

Table 2.1. Subtidal reef monitoring sites at Eagle Rock Marine Sanctuary.

<table>
<thead>
<tr>
<th>Region</th>
<th>No.</th>
<th>Description</th>
<th>Status</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle Rock</td>
<td>3909</td>
<td>Eagle Rock Inside</td>
<td>MPA</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3910</td>
<td>Eagle Rock Outside</td>
<td>Reference</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2.2. Subtidal reef monitoring survey times in Eagle Rock MS.

<table>
<thead>
<tr>
<th>Survey</th>
<th>Time</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>December 2003</td>
<td>3909; 3910</td>
</tr>
<tr>
<td>2</td>
<td>April 2005</td>
<td>3909; 3910</td>
</tr>
<tr>
<td>3</td>
<td>December 2005</td>
<td>3909; 3910</td>
</tr>
<tr>
<td>4</td>
<td>December 2008</td>
<td>3909; 3910</td>
</tr>
<tr>
<td>5</td>
<td>January 2011</td>
<td>3909; 3910</td>
</tr>
<tr>
<td>6</td>
<td>April 2013</td>
<td>3909; 3910</td>
</tr>
<tr>
<td>7</td>
<td>June & July 2015</td>
<td>3909; 3910</td>
</tr>
</tbody>
</table>
Figure 2.1. Eagle Rock Marine Sanctuary and the positions of survey sites and transects - yellow dots and lines (base map provided by NearMap).
2.2 Census Method

2.2.1 General Description

The Edgar-Barrett methods (Edgar and Barrett 1997, 1999; Edgar et al. 1997) are used for the repeated visual census of a set of sites within locations (usually within 10s km of the coastline). The position of each site is fixed, as with the position of transects surveyed within each site. Two hundred metres of four contiguous 50 m transects are surveys at each site. In accordance with the new Reef Life Survey methods data are now recorded for each side of the transect, termed ‘blocks’.

Where possible, sampling was along the 5 m (± 1 m) depth contour, to minimise spatial variability between sites. The depth of 5 m was considered optimal for monitoring because diving times are not limited by decompression schedules and these reefs are subjected to heavy fishing pressure from wrasse fishers, rock lobster fishers and divers. Sampling at some sites had to be deeper or shallower, depending on the available habitat and exposure to wave action (with sites ranging from 2 to 12 m deep).

Each site was located using GPS and numbered and weighted transect lines were run along the appropriate depth contour. The resulting 200 m of line was divided into four contiguous 50 m transects (T1 to T4). The orientation of the transects was the same for every survey, with T1 toward the north or east along the coast (i.e. anticlockwise along the open coast: T1 is in the direction of “land-to-the-left”).

For each transect, five different census methods were used to obtain adequate descriptive information on reef communities at difference spatial scales. These involved the census of: the abundance and size structure of large fishes (Method 1); the abundance of cryptic fishes and benthic invertebrates (Method 2); the percent cover of macro algae (Method 3); the density of string-kelp *Macrocystis* plants (Method 4); and the abundance and size structure of mobile fishes using a diver-operated stereo video system, DOVS (Method 5). The depth, horizontal visibility, sea state and cloud cover are recorded for each site. Horizontal visibility was gauged by the distance along the transect line to detect a 100 mm long fish (female wrasse). All field observations are recorded on underwater paper. The DOVS method records observations to a calibrated stereo video pairs.

2.2.2 Method 1 – Mobile Fishes and Cephalopods

The densities of mobile large fishes and cephalopods were estimated by a diver swimming up one side of the 50 m transect (5 m wide x 5 m high x 50 m long block). The observer recorded the number and estimated size-class of fish, within 5 m of each side of the line (50 x 10 m area). The size-classes for fish are 25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 500, 625, 750, 875 and 1000+ mm. The data for easily sexed species were recorded...
separately for males and female/juveniles. Such species include the blue-throated wrasse *Notolabrus tetricus*, herring canel *Olisthops cyanomelas*, barber perch *Caesioperca rasor*, rosy wrasse *Pseudolabrus rubicundus* and some monacanths. A total of four 50 m transects (two blocks per transect) were censused for mobile fish at each site. Dominant fish species observed in the Central Victorian Bioregion are listed in Table 2.3.

2.2.3 Method 2 – Invertebrates and Cryptic Fishes

Cryptic fishes and mega faunal invertebrates (non-sessile: *e.g.* large molluscs, echinoderms, crustaceans) were counted along the transect lines used for the fish survey. A diver counted animals within 1 m of one side of the line (a total of four 1 x 50 m transects). The diver had a known arm-length to chest measurement to standardise the 1 m distance. The maximum length of abalone and the carapace length and sex of rock lobsters were measured *in situ* using Vernier calliper, where possible. Some sites were designated abalone size monitoring sites (‘Ab100’ sites) and a minimum of 100 abalone were measured at these sites (where possible within diving limits). Sessile animals were not counted with the exception of any marine pest species of pre-determined ecological interest (such as the introduced feather worm *Sabella spallanzanii* and the native feather worm at Point Hicks *Sabellastarte australis*). Selected specimens were collected for identification and preservation in a reference collection. Dominant cryptic fish and invertebrate species in the Central Victorian Bioregion are listed in Table 2.4.

2.2.4 Method 2b – Manufactured Debris

Manufactured debris items were counted along the invertebrate transect. The debris were classified into categories: fishing gear; plastic; cloth; metal; glass; wood; other and none (to indicate it was looked for but none seen). It was also recorded whether the debris was left or removed.

2.2.5 Method 3 – Macroalgalgae

The abundance of macrophytes (kelp, seaweeds, and seagrass) was quantified using a points-cover method. A quad, 0.5 m x 0.5 m, was placed at 10 m intervals along the transect line (5 quadrats per transect). The quad was divided into a grid of 7 x 7 perpendicular lines, giving 50 points (including one corner). Cover was estimated by counting the number of points intersecting with a species (Figure 2.2). The points-cover was determined independently for each species. Where there was a canopy or layers, the total number of points-counts from all species may be greater than 50. Selected specimens were collected for identification and preservation in a reference collection. Dominant macrophyte species in the Central Victorian Bioregion are listed in Table 2.6.
2.2.6 Method 4 – Macrocystis

Where present, the density of string kelp *Macrocystis pyrifera* was estimated at the same time by the seaweed (Method 3) observer. While swimming between quadrat positions, the diver counted all observable *Macrocystis* plants within 5 m either side of the transect for each 10 m section of the transect (10 x 10 m sections). This survey component commenced in spring 1999.

![Image of underwater grid](image)

Figure 2.2. The cover of macrophytes is measured by the number of points intersecting each species on the quadrat grid.
2.2.7 Method 5 – Fish Stereo Video

A diver operated stereo video system (DOVS; SeaGIS design) was used alongside the diver UVC fish surveys. The videos were Canon HG21 handycams recording in 1080p format. The cameras were calibrated before and after each excursion using a SeaGIS calibration cube and SeaGIS CAL software for calibration of internal and external camera parameters. The cameras were mounted permanently to a diver frame. A flashing LED mounted on a pole in front of both frames was used for synchronisation of paired images from each camera.

The stereo camera system was operated simultaneously by the diver who did the UVC fish and done at the same time. The stereo camera frame had the underwater UVC slate mounted on it for the simultaneous observations. The camera system was pointed parallel with the transect line and downward 30° with the diver swimming 2.5 m to one side of the transect and 1.3 m above the canopy, as with the UVC method. The camera unit was tilted vertically (up or down) according to the fish seen to ensure adequate video for size measurements, but was generally tilted down at an angle of 30°. Lateral movement of the unit was minimised. The survey speed was 10 m per minute (0.17 m s⁻¹).

In the laboratory, the stereo video footage was converted from MTS to AVI format. The SeaGIS EventMeasure and PhotoMeasure software were then used for extracting and recording fish density and fish length estimates from the stereo video footage. Measured fish were those without body flexure and orientated transverse to the camera, as well as with the measurement points visible. Standard lengths (SL) were measured (tip of snout to end of caudal fin ray). The original video footage and frames used for fish length measurements were archived. The results of this method were archived for future analysis and were not reported here.
2.2.8 Method 0 – Off-Transect Sightings

Any species of interest sighted off-transect, or on transect but not during the formal survey, was recorded with the designation of Method 0 and Transect 0. Note that additional off transect abalone measurements were recorded as Method 2, Transect 0.

Table 2.3. Mobile fishes and cephalopods (Method 1) taxa commonly censused along the coast of Victoria.

<table>
<thead>
<tr>
<th>Method 1</th>
<th>Mobile Bony Fishes</th>
<th>Mobile BONY Fishes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalopoda</td>
<td>Upeneichthys vlamingshii</td>
<td>Odax acroptilus</td>
</tr>
<tr>
<td>Octopus maorum</td>
<td>Girella tricuspidata</td>
<td>Olisthops cyanomelas</td>
</tr>
<tr>
<td>Sepia apama</td>
<td>Girella elevata</td>
<td>Siphonognathus attenuatus</td>
</tr>
<tr>
<td>Sepioteuthis australis</td>
<td>Girella zebra</td>
<td>Siphonognathus beddomei</td>
</tr>
<tr>
<td>Sharks and Rays</td>
<td>Girella zebrata</td>
<td>Siphonognathus radiatus</td>
</tr>
<tr>
<td>Heterodontus portusjacksoni</td>
<td>Scorpis aequipinnis</td>
<td>Monacanthus chinensis</td>
</tr>
<tr>
<td>Parascyllium variolatum</td>
<td>Scorpis lineolata</td>
<td>Myliobatis australis</td>
</tr>
<tr>
<td>Cephaloscyllium laticeps</td>
<td>Atypichthys strigatus</td>
<td>Urolophus cruciatu</td>
</tr>
<tr>
<td>Trygonorrhina fasciata</td>
<td>Tilodon sexfasciatus</td>
<td>Phyllopteryx taeniolatus</td>
</tr>
<tr>
<td>Trygonorrhina guaneria</td>
<td>Enoplosus armatus</td>
<td>Meuschenia flavolineata</td>
</tr>
<tr>
<td>Dasyatis brevicaudata</td>
<td>Pentaceropsis recurvirostris</td>
<td>Meuschenia freycineti</td>
</tr>
<tr>
<td>Myliobatis australis</td>
<td>Parma victoriae</td>
<td>Myliobatis australis</td>
</tr>
<tr>
<td>Urolophus paucimaculatus</td>
<td>Parma microlepis</td>
<td>Pagrus auratus</td>
</tr>
<tr>
<td>Urolophus gigas</td>
<td>Aploactylus arctidens</td>
<td>Arctocephalus pusillus</td>
</tr>
<tr>
<td>Urolophus gigas</td>
<td>Aplodactylus arcticus</td>
<td>Arctocephalus pusillus</td>
</tr>
<tr>
<td>Mobile Bony Fishes</td>
<td>Cheilodactylus spectabilis</td>
<td>Meuschenia venusta</td>
</tr>
<tr>
<td>Phyllopteryx taeniolatus</td>
<td>Nemadactylus douglasii</td>
<td>Eubalichthys gunnii</td>
</tr>
<tr>
<td>Caesioperca lepidoptera</td>
<td>Dactylophora nigricans</td>
<td>Eubalichthys mosaicus</td>
</tr>
<tr>
<td>Caesioperca rasor</td>
<td>Latridopsis forsteri</td>
<td>Hypoplectrodes macullocchi</td>
</tr>
<tr>
<td>Hypoplectrodes macullocchi</td>
<td>Scorpinae papillosa</td>
<td>Arctocephalus pusillus</td>
</tr>
<tr>
<td>Trachinops caudimaculatus</td>
<td>Sphyraena novaehollandiae</td>
<td>Tetractenos glaber</td>
</tr>
<tr>
<td>Dinolestes lewini</td>
<td>Achoerodus gouldii</td>
<td>Contusus brevicaudus</td>
</tr>
<tr>
<td>Sillaginodes punctata</td>
<td>Ophthalmocephalus lineolata</td>
<td>Pseudocaranx wrighti</td>
</tr>
<tr>
<td>Pseudocaranx wrighti</td>
<td>Dotralabras aurantiacus</td>
<td>Notolabrus fucicola</td>
</tr>
<tr>
<td>Trachurus novaehollandiae</td>
<td>Notolabrus tetricus</td>
<td>Arrapis spp</td>
</tr>
<tr>
<td>Trachurus declivis</td>
<td>Pseudolabrus rubicundus</td>
<td>Mammals and Reptiles</td>
</tr>
<tr>
<td>Arrapis georgianus</td>
<td>Pictilarius laticlavius</td>
<td>Arctocephalus pusillus</td>
</tr>
<tr>
<td>Pagrus auratus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.4. Invertebrate and cryptic fish (Method 2) taxa commonly censused along the coast of Victoria.

<table>
<thead>
<tr>
<th>Method 2</th>
<th>Crustacea</th>
<th>Echinodermes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molluscs</td>
<td>Crustacea</td>
<td>Echinodermes</td>
</tr>
<tr>
<td>Haliotis rubra</td>
<td>Jasus edwardsii</td>
<td>Comanthus trichoptera</td>
</tr>
<tr>
<td>Haliotis laevigata</td>
<td>Guinnesia chabrus</td>
<td>Comanthus tasmaniae</td>
</tr>
<tr>
<td>Haliotis scalaris</td>
<td>Nectocarcinus tuberculosa</td>
<td>Heliocidaris erythrogramma</td>
</tr>
<tr>
<td>Scutus antipodes</td>
<td>Paguristes frontalis</td>
<td>Goniocidaris tubaria</td>
</tr>
<tr>
<td>Turbo undulatus</td>
<td>Strigopagus strigimanus</td>
<td>Amblypneustes spp</td>
</tr>
<tr>
<td>Phasianella australis</td>
<td>Paguridae spp (other)</td>
<td>Holopneustes inflatus</td>
</tr>
<tr>
<td>Phasianella ventricosa</td>
<td>Cryptic Fishes</td>
<td>Holopneustes porosissimus</td>
</tr>
<tr>
<td>Phasianella ventricosa</td>
<td>Gymnothorax prasinus</td>
<td>Holopneustes purpurascens</td>
</tr>
<tr>
<td>Phasianotrechus eximius</td>
<td>Pempheris multiradiata</td>
<td>Tosia magnifica</td>
</tr>
<tr>
<td>Dicathais orbita</td>
<td>Gnathanacanthus goetzeei</td>
<td>Tosia australis</td>
</tr>
<tr>
<td>Australaria australasia</td>
<td>Aetapcuss maculatus</td>
<td>Pentagonaster dubeni</td>
</tr>
<tr>
<td>Penion mandarinus</td>
<td>Parascyllium variolatum</td>
<td>Petricia vernicina</td>
</tr>
<tr>
<td>Bovichtus angustifrons</td>
<td>Fromia polypora</td>
<td></td>
</tr>
<tr>
<td>Charonia lampas</td>
<td>Cristiceps australis</td>
<td>Echinaster arystatus</td>
</tr>
<tr>
<td>Conus anemone</td>
<td>Heteroclinus johnstoni</td>
<td>Plectaster decanus</td>
</tr>
<tr>
<td>Neodoris chrysoderma</td>
<td>Clinid spp</td>
<td>Nectria macrobrachia</td>
</tr>
<tr>
<td>Ceratosoma brevicaudatum</td>
<td>Norfolkia clarkei</td>
<td>Nectria ocellata</td>
</tr>
<tr>
<td>Mimachlamys asperrima</td>
<td>Forsterygion varium</td>
<td>Nectria multispina</td>
</tr>
<tr>
<td>Octopus maorum</td>
<td>Paraplesiops meleagris</td>
<td>Pseudonepanthia troughtoni</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Meridiastra gunnii</td>
<td></td>
</tr>
<tr>
<td>Phlyctenactis tuberculosa</td>
<td>Uniophora granifera</td>
<td></td>
</tr>
<tr>
<td>Annelida</td>
<td>Coscinasteria muriaca</td>
<td></td>
</tr>
<tr>
<td>Sabella spallanzani</td>
<td>Asterias amurensis</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.5. Manufactured debris (Method 2b) censused in Victoria.

<table>
<thead>
<tr>
<th>Method 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishing gear</td>
<td>Metal</td>
<td>Glass</td>
</tr>
<tr>
<td>Plastic</td>
<td>Cloth</td>
<td>Wood</td>
</tr>
</tbody>
</table>
Table 2.6. Common macroalgae and seagrass (Method 3) taxa censused along the coast of Victoria.

<table>
<thead>
<tr>
<th>Method 3</th>
<th>Chlorophyta (green algae)</th>
<th>Chromista (brown algae)</th>
<th>Chromista (brown algae)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulva spp</td>
<td>Homeostrichus sinclairii</td>
<td>Sargassum spinuligerum</td>
<td></td>
</tr>
<tr>
<td>Cladophora prolifera</td>
<td>Exallosorus olseni</td>
<td>Sargassum varians</td>
<td></td>
</tr>
<tr>
<td>Apjohnia lativaerens</td>
<td>Chlianidophora microphylla</td>
<td>Sargassum verruculosum</td>
<td></td>
</tr>
<tr>
<td>Caulerpa longifolia</td>
<td>Cladostephus spongiosus</td>
<td>Sargassum vestitum</td>
<td></td>
</tr>
<tr>
<td>Caulerpa trifaria</td>
<td>Carpomitra costata</td>
<td>Ectocarpus spp</td>
<td></td>
</tr>
<tr>
<td>Caulerpa scalpelliformis</td>
<td>Perithalia cordata</td>
<td>Rhodophyta (red algae)</td>
<td></td>
</tr>
<tr>
<td>Caulerpa remotifolia</td>
<td>Bellotia eriophororum</td>
<td>Pterocladiella capillacea</td>
<td></td>
</tr>
<tr>
<td>Caulerpa brownii</td>
<td>Macrocystis pyrifera</td>
<td>Pterocladia lucida</td>
<td></td>
</tr>
<tr>
<td>Caulerpa flexilis</td>
<td>Ecklonia radiata</td>
<td>Gelidium asperum</td>
<td></td>
</tr>
<tr>
<td>Caulerpa flexilis var muelleri</td>
<td>Undaria pinnatifida</td>
<td>Gelidium australis</td>
<td></td>
</tr>
<tr>
<td>Caulerpa obscura</td>
<td>Durvillaea potatorum</td>
<td>Sonderophycus coriaceus</td>
<td></td>
</tr>
<tr>
<td>Caulerpa sedoides f. geminata</td>
<td>Xiphophora chondrophylla</td>
<td>Peyssonnelia sp</td>
<td></td>
</tr>
<tr>
<td>Caulerpa cactoides</td>
<td>Phyllospora comosa</td>
<td>Areschouogia congesta</td>
<td></td>
</tr>
<tr>
<td>Caulerpa Hodgkinsoniae</td>
<td>Seiroccoccus axillaris</td>
<td>Acrotylus australis</td>
<td></td>
</tr>
<tr>
<td>Caulerpa vesiculifera</td>
<td>Scaberia agardhii</td>
<td>Nizymenia australis</td>
<td></td>
</tr>
<tr>
<td>Caulerpa simpliciuscula</td>
<td>Carpoglossum confluens</td>
<td>Polyopes constrictus</td>
<td></td>
</tr>
<tr>
<td>Codium pomoides</td>
<td>Cystophora brownii</td>
<td>Erythroclonium spp</td>
<td></td>
</tr>
<tr>
<td>Codium spongiosum</td>
<td>Cystophora expansa</td>
<td>Solieria robusta</td>
<td></td>
</tr>
<tr>
<td>Codium australicum</td>
<td>Cystophora grevillei</td>
<td>Thamnoclonium dichotomum</td>
<td></td>
</tr>
<tr>
<td>Codium duthieae</td>
<td>Cystophora monilifera</td>
<td>Callophyllis rangiferina</td>
<td></td>
</tr>
<tr>
<td>Codium galeatum</td>
<td>Cystophora moniliformis</td>
<td>Stenogramme interrupta</td>
<td></td>
</tr>
<tr>
<td>Codium harvey</td>
<td>Cystophora pectinata</td>
<td>Callophycus laxus</td>
<td></td>
</tr>
<tr>
<td>Codium lucasi</td>
<td>Cystophora platylobium</td>
<td>Plocamium angustum</td>
<td></td>
</tr>
<tr>
<td>Chromista (brown algae)</td>
<td>Cystophora retorta</td>
<td>P. cirrhosum</td>
<td></td>
</tr>
<tr>
<td>Halopteris spp</td>
<td>Cystophora siliquosa</td>
<td>P. mertensii</td>
<td></td>
</tr>
<tr>
<td>Dictyota dichotoma</td>
<td>Cystophora retroflexa</td>
<td>P. dilatatum</td>
<td></td>
</tr>
<tr>
<td>Dictyota fastigiata</td>
<td>Cystophora subfarcinata</td>
<td>P. preissianum</td>
<td></td>
</tr>
<tr>
<td>Dictyota fenestrata</td>
<td>Cystophora xiphocarpa</td>
<td>P. cartilagineum</td>
<td></td>
</tr>
<tr>
<td>Dictyota gunniana</td>
<td>Caulocystis cephalornithos</td>
<td>P. leptophyllum</td>
<td></td>
</tr>
<tr>
<td>Dictyopteris muelleri</td>
<td>Acrocarpia paniculata</td>
<td>P. patagiature</td>
<td></td>
</tr>
<tr>
<td>Dictyopteris acrostichoides</td>
<td>Sargassum decipiens</td>
<td>Phaeclocarpus alatus</td>
<td></td>
</tr>
<tr>
<td>Zonaria angustata</td>
<td>Sargassum fallax</td>
<td>Phaeocarpus complanatus</td>
<td></td>
</tr>
<tr>
<td>Zonaria crenata</td>
<td>Sargassum heteromorphum</td>
<td>Phaeocarpus peperocarpos</td>
<td></td>
</tr>
<tr>
<td>Zonaria spiralis</td>
<td>Sargassum sonderi</td>
<td>Asparagopsis armata</td>
<td></td>
</tr>
<tr>
<td>Zonaria turneriana</td>
<td>Sargassum decipiens</td>
<td>Delisea pulchra</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6 (continued). Common macroalgae and seagrass (Method 3) taxa censused along the coast of Victoria.

<table>
<thead>
<tr>
<th>Method 3</th>
<th>Rhodophyta (red algae)</th>
<th>Rhodophyta (red algae)</th>
<th>Rhodophyta (red algae)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodophyta (red algae)</td>
<td>Rhodophyta (red algae)</td>
<td>Rhodophyta (red algae)</td>
<td></td>
</tr>
<tr>
<td>Ptilonia australasica</td>
<td>Halopeltis australis</td>
<td>Gelinaria ulvoidea</td>
<td></td>
</tr>
<tr>
<td>Gracilaria cliftoni</td>
<td>Tylotus obtusatus</td>
<td>Echinothamnion hystrix</td>
<td></td>
</tr>
<tr>
<td>Curdiea angustata</td>
<td>Champia spp</td>
<td>Hypnea ramentacea</td>
<td></td>
</tr>
<tr>
<td>Melanthalia obtusata</td>
<td>Champia viridis</td>
<td>Thuretia quercifolia</td>
<td></td>
</tr>
<tr>
<td>Melanthalia abscissa</td>
<td>Ceramium spp</td>
<td>Other thallose red algae</td>
<td></td>
</tr>
<tr>
<td>Melanthalia fastigiata</td>
<td>Euptilota articulata</td>
<td>Filamentous red algae</td>
<td></td>
</tr>
<tr>
<td>Amphiroa anceps</td>
<td>Griffithsia monilis</td>
<td>Tracheophyta (seagrass)</td>
<td></td>
</tr>
<tr>
<td>Jania sagittata</td>
<td>Griffithsia teges</td>
<td>Zostera nigricaulis</td>
<td></td>
</tr>
<tr>
<td>Jania rosea</td>
<td>Ballia callitricha</td>
<td>Halophila australis</td>
<td></td>
</tr>
<tr>
<td>Arthrocardia wardii</td>
<td>Euptilota articulata</td>
<td>Amphibolis antarctica</td>
<td></td>
</tr>
<tr>
<td>Metagoniolithon radiatum</td>
<td>Dictyomena harveyana</td>
<td>Abiotic</td>
<td></td>
</tr>
<tr>
<td>Mastophoropsis canaliculata</td>
<td>Dictyomena tridens</td>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>Metamastophora flabellata</td>
<td>Jeannerettia lobata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustose coralline algae</td>
<td>Hemineura frondosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botryocladia obovata</td>
<td>Lenormandia marginata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gloiosaccion brownii</td>
<td>Epiglossum smithiae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrymenia minuta</td>
<td>Laurencia clavata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalocystis furcellata</td>
<td>Laurencia elata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laurencia filiformis</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Data Analysis – Condition indicators

2.3.1 Approach

Reef quality indicators were developed to encompass key features of MNP performance assessment and management interest. The selection of indicators for reef ecosystem management were reviewed by Turner et al. (2006) and further theoretical and field considerations are provided by Thrush et al. (2009). Both reviews suggest a variety of indicators, of both ecosystem structure and function, should be used. Rapport (1992) noted that stressors causing adverse changes in an ecosystem stand out beyond the natural range of variability observed in a system in ‘good health’. Adverse changes to an ecosystem include:

- a shift to smaller organisms;
- reduced diversity with loss of sensitive species;
- increased dominance by weedy and exotic species;
- shortened food chain lengths;
- altered energy flows and nutrient cycling;
- increased disease prevalence; and
- reduced stability/increased variability (Rapport et al. 1995).

A suite of indicators was developed for the Tasmanian reef monitoring program, which uses the same Edgar-Barrett underwater visual census methods (Stuart-Smith et al. 2008). The indicators are grouped into the general categories: biodiversity; ecosystem functions; introduced pests; climate change and fishing. The Stuart-Smith indicators were followed and adapted for the Victorian SRMP. These indices are consistent with the reviews mentioned above. Key adaptations were the use of absolute values rather than proportions, as the Victorian data had considerable concurrent variation in the numerator and denominator of many indices, making proportional indices difficult to interpret. The Stuart-Smith approach for examining community changes was extended by using the multivariate control charting method of Anderson and Thompson (2004).

The indicators were calculated separately for the three survey components, fishes, invertebrates and algae.

The indicators presented in this report provide a basis for assessment and further refinement of indicators for marine protected area performance assessment and management.
2.3.2 Biodiversity

Community Structure

Community structure is a multivariate function of both the type of species present and the abundance of each species. The community structure between pairs of samples was compared using the Bray-Curtis dissimilarity coefficient. This index compares the abundance of each species between two samples to give a single value of the difference between the samples, expressed as a percentage (Faith et al. 1987; Clarke 1993).

Count data were log transformed and points-cover values were not transformed prior to multivariate analyses.

For fishes, only site-attached species were included in the analyses.

The multi-dimensional information in the dissimilarity matrix was simplified and depicted using non-metric multidimensional scaling (nMDS; Clarke 1993). This ordination method finds the representation in fewer dimensions that best depicts the actual patterns in the hyper-dimensional data (reduces the number of dimensions while depicting the salient relationships between the samples). The nMDS results were then depicted graphically to show differences between the sample periods at each location. The distance between points on the nMDS plot is representative of the relative difference in community structure.

Kruskal stress is an indicator statistic calculated during the ordination process and indicates the degree of disparity between the reduced dimensional data set and the original hyper-dimensional data set. A guide to interpreting the Kruskal stress indicator is given by Clarke (1993): (< 0.1) a good ordination with little real risk of drawing false inferences; (< 0.2) can lead to a usable picture, although for values at the upper end of this range there is potential to mislead; and (> 0.2) likely to yield plots which can be dangerous to interpret. These guidelines are simplistic and increasing stress is correlated with increasing numbers of samples. Where high stress was encountered with a two-dimensional data set, three-dimensional solutions were sought to ensure adequate representation of the higher-dimensional patterns.

Trends in Community Structure

Multivariate control charting was used to examine the degree of changes in community structure over time. Two criteria are applied for the SRMP, the first being the deviation in community structure at a time \(t \) from the centroid of baseline community structures (1998 to 2002). This criterion is more sensitive to the detection of gradual changes over time away from the baseline conditions. In this case, there was no before-period because the no-take zone was already established. The first two surveys were used as a baseline period to detect longer term deviations. The second criterion was the deviation in community structure at time \(t \) to the
centroid of all previous times. This criterion is more sensitive at detecting abrupt or pulse changes.

Control charts were prepared for each site. The control chart analysis used the methods of Anderson and Thompson (2004) and calculations were done using the software ControlChart.exe (Anderson 2008). The analysis used the Bray-Curtis dissimilarity coefficient and the same data transformations described above. Bootstrapping was used to provide control-chart limits for identifying changes that are ‘out of the ordinary’. In this case, a 90th and 95th percentile statistic was calculated from 10000 bootstrap samples as provisional limits. The 50th percentile was also presented to assist in interpreting the control charts.

Species Diversity

The total number of individuals, N, was calculated as the sum of the abundance of all individuals across species.

Species richness, S, was given as the number of species observed at each site. Cryptic, pelagic and non-resident reef fishes were not included.

Species diversity, as a measure of the distribution of individuals among the species, was indicated using Hill’s N_2 statistic (which is equivalent to the reciprocal of Simpson’s index). In general, Hill’s N_2 gives an indication of the number of dominant species within a community. Hill’s N_2 provides more weighting for common species, in contrast to indices such as the Shannon-Weiner Index (Krebs 1999), which weights the rarer species.

The diversity statistics were averaged across sites for the marine protected area and reference regions.

Abundances of Selected Species

Mean densities of selected species were plotted over time for the marine protected area and reference regions. The species presented included abundant or common species as well as any with unusual changes over time.

2.3.3 Ecosystem Functional Components

Plant Habitat and Production

Biogenic habitat and standing stocks of primary producers was indicated by the pooled abundances of macrophyte groups:

- crustose coralline algae;
- canopy browns – defined here as *Ecklonia radiata, Undaria pinnatifida, Lessonia corrugata, Macrocystis pyrifera, Durvillaea potatorum, Phyllospora comosa, Seirococcus axillaris, Acrocarpia paniculata, Cystophora platylobium, C. moniliformis, C. pectinata, C. monilifera, C. retorta* and *C. retroflexa*;
- smaller browns (all other brown species except Ectocarpales);
- erect coralline algae;
- thallose red algae (except filamentous species);
- green algae; and
- seagrass *Amphibolis antarctica*.

Invertebrate Groups

The abundances of invertebrates were pooled into the functional groups:

- grazers and habitat modifiers, including gastropods and sea urchins;
- filter feeders, including fanworms and feather stars;
- predators, including gastropods, crabs and lobsters but excluding seastars; and
- seastars, which are mostly predators, although *Meridiastra gunnii* may also be a detritus feeder.

Fish Groups

The abundances of fishes were also pooled into trophic groups:

- herbivores and omnivorous grazers;
- foraging predators, including pickers and foragers of stationary, benthic prey such as amphipods, crabs and gastropods;
- hunter predators, including fishes that hunt mobile prey, particularly other fishes, as chasers and ambushers; and
- planktivores, including feeders of zooplankton and small fish in the water column.

Sediment Cover

The percentage cover of sand and sediment on the survey transect (using Method 3) is the only relevant abiotic parameter measured for the SRMP. This index may indicate changes in hydrodynamic or coastal processes.

2.3.4 Introduced Species

The status of introduced species is initially reported as presence-absence of species. Where a species is established and the SRMP measures the abundance of that species, indicators of status are:

- number of introduced species;
- total abundance of introduced species; and
where the data are suitable, time series of abundance of selected introduced species – noting the timing of surveys may influence the time series.

2.3.5 Climate Change

Species Composition

Climate change is likely to cause changes to current strengths and circulation patterns which affect both the ambient temperature regime and the dispersion and recruitment of propagules or larvae. In Victoria, there may be increased incursions of the East Australia Current into eastern Victoria and the South Australia Current into western Victoria and Bass Strait. Biological responses to such changes are potentially indicated by biogeographical changes in the species composition, toward that of adjacent, warmer bioregions. For this analysis, each species was assigned a nominal geographical range:

- cold water species, reflecting the ‘Maugean’ province, from approximately Kangaroo Island in South Australia, around Tasmania and into southern New South Wales;
- western species, reflecting the ‘Flindersian’ province, from southern Western Australia, along the Great Australian Bight and South Australia to western Victoria;
- eastern species, reflecting the ‘Peronian’ province, encompassing New South Wales and into eastern Victoria;
- southern species, including species ranging widely along the southern Australian coast; and
- northern species, including warm temperate and tropical species in Western Australia and New South Wales and northward.

The number of species and total number of individuals was calculated for the cold water, western and eastern groups.

Macrocystis pyrifera

The string kelp *Macrocystis pyrifera*, which includes the former species *M. angustifolia* (Macaya and Zuccarello 2010), is considered potentially vulnerable to climate change through reduced nutrient supply from drought and nutrient poorer warmer waters (Edyvane 2003). The mean abundance of *M. pyrifera* were plotted using densities from Method 4, or cover estimates from Method 4 where density data were unavailable. *Macrocystis pyrifera* provides considerable vertical structure to reef habitats and can also attenuate water currents and wave motion. The loss of *M. pyrifera* habitats may reflect ecosystem functional changes.
Centrostephanus rodgersii

The geographical range of the long-spined sea urchin, *Centrostephanus rodgersii*, has increased conspicuously over the past decades (Johnson et al. 2005). This grazing species can cause considerable habitat modification, decreasing seaweed canopy cover and increasing the area of urchin barrens. Abundances are determined using Method 2 and average abundances are plotted through time. The extent of urchin barrens, of any sea urchin species, will be monitored using data from Method 6, as time series data become available. The abundance of *C. rodgersii* are also influenced by interactions with abalone as competitors for crevice space, Abalone divers may periodically ‘cull’ urchins within a reef patch and the species is also of interest to urchin harvesters.

Durvillaea potatorum

The bull kelp *Durvillaea potatorum* is a cold water species that is likely to be vulnerable to increased ambient temperatures. There is anecdotal evidence of a retraction of the northern distribution down the New South Wales coast by approximately 80 km. Most of the SRMP sites specifically avoid *D. potatorum* habitats as these occur on highly wave-affected and turbulent reefs. Some sites contain *D. potatorum* stands, providing limited data on population status. *Durvillaea potatorum* is potentially two species, having genetically and morphologically distinct eastern and western forms (Fraser et al. 2009).

2.3.6 Fishing

Abalone

Indicators of harvesting pressure on abalone were mean density, mean size and the size frequency structure. The size structure indicators were the intercept and slope of the size spectrum. Size frequencies were first compiled for 10 mm size classes centred at 105, 115, 125, 135, 145, 155 and 165 mm and the spectrum slope and intercept was determined by a linear regression of ln(count + 1) versus ln(size + 1). The indicators were calculated for the blacklip abalone, *Haliotis rubra*, in most regions and for the greenlip abalone, *H. laevigata*, where present in suitable densities (in central and western Victoria).

Rock Lobster

The southern rock lobster, *Jasus edwardsii*, is present throughout Victoria. The monitoring transects generally did not traverse rock lobster microhabitats. Abundances and sizes were reported where data were available.

Fish

Potential fishing impacts or recovery of fishing impacts within marine protected areas were indicated by:
- abundances of selected fished species;
- mean size of selected fished species;
- total biomass of fished fish species and the portion of biomass > 200 mm length, this being the approximate legal minimum size for most fished species;
- biomass of fishes > 200 mm length, calculated using length-weight relationships; and
- parameters of the size-spectrum of fished species.

The size structure indicators were the intercept and slope of the size spectrum. Size frequencies were first compiled for 50 mm size classes centred at 100, 150, 200, 250, 300, 350, 400, 450, 500 and 550 mm and the spectrum slope and intercept was determined by a linear regression of ln(count + 1) versus ln(size + 1).

Biomass was calculated for the predominantly fished species, excluding incidentally caught or by-catch species. Lengths were converted to weights using published conversion factors for the power relationship:

\[\text{weight (grams)} = a \times \text{Length (cm)}^b \]

The weight estimations used the coefficients compiled by FishBase (www.fishbase.org). The length-weight parameters used are provided in Table 2.7.
Table 2.7. Fish length-weight conversion parameters used to calculate the biomass of fished species. Where parameters were unavailable, parameters for a similar species were applied.

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheilodactylus spectabilis</td>
<td>0.01660</td>
<td>3.00</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Cheilodactylus nigripes</td>
<td>0.01202</td>
<td>3.02</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Cheilodactylus fuscus</td>
<td>0.01202</td>
<td>3.02</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Latridopsis forsteri</td>
<td>0.01660</td>
<td>3.00</td>
<td>Fishbase: C. spectabilis</td>
</tr>
<tr>
<td>Notolabrus tetricus</td>
<td>0.00977</td>
<td>3.07</td>
<td>Fishbase: N. fucicola</td>
</tr>
<tr>
<td>Notolabrus fucicola</td>
<td>0.00977</td>
<td>3.07</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Notolabrus gymnogenis</td>
<td>0.0977</td>
<td>3.07</td>
<td>Fishbase: N. fucicola</td>
</tr>
<tr>
<td>Achoerodus viridis</td>
<td>0.01800</td>
<td>3.044</td>
<td>Fishbase: A. gouldii</td>
</tr>
<tr>
<td>Achoerodus gouldii</td>
<td>0.01800</td>
<td>3.044</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Sphyraena novaehollandiae</td>
<td>0.00813</td>
<td>2.80</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Sphyraena obtusata</td>
<td>0.00776</td>
<td>2.91</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Sillago flindersi</td>
<td>0.00851</td>
<td>3.09</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Sillaginodes punctata</td>
<td>0.00389</td>
<td>3.15</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Seriola lalandii</td>
<td>0.01820</td>
<td>2.944</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Seriola hippos</td>
<td>0.01820</td>
<td>2.944</td>
<td>Fishbase: S. lalandii</td>
</tr>
<tr>
<td>Scorpis aequipinnis</td>
<td>0.01000</td>
<td>3.04</td>
<td>Fishbase: generic parameters</td>
</tr>
<tr>
<td>Pentaceropsis recurvirostris</td>
<td>0.01000</td>
<td>3.04</td>
<td>Fishbase: generic parameters</td>
</tr>
<tr>
<td>Pagrus auratus</td>
<td>0.02399</td>
<td>2.94</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Meuschenia scaber</td>
<td>0.02884</td>
<td>2.96</td>
<td>Fishbase</td>
</tr>
<tr>
<td>Meuschenia hippocrepis</td>
<td>0.02884</td>
<td>2.96</td>
<td>Fishbase: M. scaber</td>
</tr>
<tr>
<td>Meuschenia freycineti</td>
<td>0.02884</td>
<td>2.96</td>
<td>Fishbase: M. scaber</td>
</tr>
<tr>
<td>Acanthaluteres vittiger</td>
<td>0.02089</td>
<td>2.92</td>
<td>Fishbase: M. scaber</td>
</tr>
</tbody>
</table>
3 Results

3.1 Macroalgae

The algal communities surveyed at the Eagle Rock Marine Sanctuary area were similar in species composition and community structure to those sites surveyed in other exposed coastal locations along the Victorian coast (Edmunds et al. 2000). Sites had an algal canopy dominated by *Phyllospora comosa* with a smaller quantity of *Cystophora moniliformis* and *Ecklonia radiata* cover. Dominant understorey species at both sites included the red algal species *Phacelocarpus peperocarpus*, *Jania rosea*, *Rhodymenia obtusa* and *Ballia callitricha*. Other species present included *Cystophora retorta*, *Melanthalia obtusata* and encrusting corallines.

The three-dimensional nMDS plot indicated both sites were distinct in community structures for the first half of the monitoring period, but with very similar trajectories of change over time. There was more overlap in community structures between the two sites during the latter part of the monitoring period, however the reference site had greater changes occurring between surveys for 2013 and 2015. There were no substantial macroalgal community changes inside the MS throughout the monitoring period (Figures 3.1 and 3.2).

Total algal cover was relatively stable inside the MS at 40-50 % cover. Total algal cover was more variable and generally higher at the deeper reference site (Figure 3.3a). Species richness was similar at both sites, ranging between 22-33 species for most surveys (Figure 3.3b). Algal diversity was stable inside the MS, with Hill's N_2 ranging from 3-4. There were rapid changes between values of 2-6 outside the MS (Figure 3.3c).

The abundance of *Phyllospora comosa* peaked at both sites in 2006 with a subsequent gradual decline to minima of 40-45 % cover in 2011 and 2015 for inside and outside the MS respectively (Figure 3.4a).

The abundances of *Ecklonia radiata*, *Cystophora moniliformis* and *C. platylobium* were minor components of the canopy throughout the monitoring period (*e.g.* Figures 3.4b and 3.4c).

The understorey species had a succession or peaks in abundance between years, with crustose coralline algae, *Jania rosea* and *Plocamium angustum* having peaks in 2009, *Plocamium dilatatum* in 2011 and *Phacelocarpus peperocarpos* in 2013 (Figures 3.4d to 3.4i).
Figure 3.1. Three-dimensional nMDS plot of algal assemblage structure at Eagle Rock MS. Black filled shapes denote the first survey time. Kruskal stress = 0.05.
Figure 3.2. Control charts of algal assemblage structure in the Eagle Rock MS.
Figure 3.3. Algal species diversity indicators for MNP and reference sites at Eagle Rock MS.
Figure 3.4. Percent cover of dominant algal species inside and outside the Eagle Rock MS.
Figure 3.4 (continued). Percent cover of dominant algal species inside and outside the Eagle Rock MS.
Eagle Rock MS Subtidal Reef Monitoring

Figure 3.4 (continued). Percent cover of dominant algal species inside and outside the Eagle Rock MS.

- **Ballia callitricha**
- **Plocamium angustum**
- **Plocamium dilatatum**
3.2 Invertebrates

The invertebrate fauna was largely composed of the gastropod *Turbo undulatus*, the dogwhelk *Dicathais orbita*, and the sea star *Nectria macrobrachia*. Other commonly encountered species included blacklip abalone *Haliotis rubra*, the red bait crab *Guinusia chabrus* and the sea stars *Nectria ocellata* and *Pentagonaster dubeni*.

The three-dimensional nMDS plot indicated a distinct difference in the invertebrate assemblage structure between the two sites at all times (Figure 3.5). The deviation over time at the reference site was much greater than the MPA site.

The control chart indicated the invertebrate assemblage of the MS remained relatively consistent over the survey period, with a larger change occurring between 2013 and 2015. The considerable temporal variability at the reference site resulted in significant ongoing trends away from the prior-times centroid and there was a significant difference from the first two surveys (baseline period) for most subsequent surveys (Figure 3.6).

The total invertebrate abundance reflected the combined abundances of *Turbo undulatus* and *Haliotis rubra*, with peaks inside the MS in 2003 and 2009 and lowest abundances in 2015 (Figure 3.7a). Species richness also generally declined over the monitoring period, although species diversity was highest during latter years, when dominant species were less abundant (Figures 3.7b and 3.7c).

The abundance of blacklip abalone *Haliotis rubra* was generally low at both sites for most surveys, with the exception of a peak in abundance inside the MS in 2009 (Figure 3.8a). There was also a peak in abundance of *Turbo undulatus* inside the MS at the same time, along with a prior peak in 2004 (Figure 3.8b).
Figure 3.5. Three-dimensional nMDS plot of invertebrate assemblage structure at Eagle Rock MS. Black, filled shapes denote the first survey time. Kruskal stress = 0.05.
Figure 3.6. Control charts of invertebrate assemblage structure at Eagle Rock MS.
Figure 3.7. Invertebrate species diversity indicators for MNP and reference sites at Eagle Rock.
Figure 3.8. Density of invertebrate species inside and outside the Eagle Rock MS.
3.3 Fishes

The most abundant fish species at the Eagle Rock sites included the blue throat wrasse *Notolabrus tetricus*, herring cale *Olisthops cyanomelas*, the horseshoe leatherjacket *Meuschenia hippocrepis* and sea sweep *Scorpis aequipinnis*. Other species present included the magpie perch *Cheilodactylus nigripes* and the scalyfin *Parma victoriae*.

The three dimensional nMDS indicated there were no substantial differences in fish assemblages between the MPA site and reference sites (Figure 3.9). The control charts indicated there was a shift away from initial baseline conditions, with the greatest shifts occurring to 2013 and 2015 (Figures 3.9 and 3.10).

Total fish abundance, species richness and diversity had similar temporal patterns over time. Notably, there was a very low number of species and individuals sighted in 2015. There was a protracted period of very strong swells between April and July 2015 which may have affected their abundance and/or sightability.

There were similar trends over time in the abundance of blue throated wrasse *Notolabrus tetricus* and herring cale *Olisthops cyanomelas* within each site. Peaks in abundance of both species occurred at the reference site in 2011 and inside the MS in 2013 (Figure 3.12e and 3.12f). There were no discernible trends for other observed fishes (Figure 3.12a to 3.12d).
Figure 3.9. Three-dimensional nMDS plot of fish assemblage structure at Eagle Rock MS. Black, filled shapes denote the first survey time. Kruskal stress = 0.03.
Figure 3.10. Control charts of fish assemblage structure at Eagle Rock MS.
Figure 3.11. Fish species diversity indicators for MNP and reference areas at Eagle Rock MS.
Figure 3.12. Density of fish species inside and outside the Eagle Rock MS.
Figure 3.12 (continued). Density of fish species inside and outside the Eagle Rock MS.
3.4 Ecosystem Functional Components

3.4.1 Habitat and Production

The cover of canopy brown seaweeds was at 55-60% cover both inside and outside the MS in 2013 and 2015, which was approximately the median level inside the MS and the lowest recorded levels for the reference site (Figure 3.13a). The abundance of thallose red algae was consistently high, 20-40 % cover, at the reference site and there was an apparent increasing trend inside the MS (Figure 3.13c). The cover of crustose coralline algae was relatively low inside the MS in 2015 and green algae was relatively high at both sites in 2015 (Figures 3.13d and 3.13f).

3.4.2 Sediment Cover

Sediment cover is relatively variable inside the MS. Little sediment was observed in 2013 – this may possibly be transect placement or observer error (Figure 3.14).

3.4.3 Invertebrate Groups

The abundance of grazers, dominated by *Turbo undulatus*, had peaks in 2003 and 2009 (Figure 3.15a). Invertebrate predators, dominated by *Dicathais orbita*, had a relatively high abundance in 2006. Other invertebrate functional groups were in low and variable abundances (Figure 3.15).

3.4.4 Fish Groups

There were no distinctive patterns or trends in abundances of the fish functional groups (Figure 3.16).
Figure 3.13. Percent cover of macrophyte functional groups inside and outside the Eagle Rock MS.
Figure 3.13 (continued). Percent cover of macrophyte functional groups inside and outside the Eagle Rock MS.
Figure 3.14. Sediment functional group percent cover inside and outside the Eagle Rock MS.
Figure 3.15. Invertebrate functional group densities inside and outside Eagle Rock MS
Figure 3.15 (continued). Invertebrate functional group densities inside and outside Eagle Rock MS.
Figure 3.16. Fish functional group density inside and outside the Eagle Rock MS.
Figure 3.16 (continued). Fish functional group density inside and outside the Eagle Rock MS.
3.5 Introduced Species

No introduced species were observed inside the Eagle Rock MS or the reference site during the monitoring period.

3.6 Climate Change

3.6.1 Species composition

There was no indication of species changes with affinities for different biogeographical (and climate) regions. Maugean algal and fish species abundances followed the same trajectory as the overall species abundances since 2003 (e.g. Figures 3.17 and 3.18).

3.6.2 *Macrocystis pyrifera*

The giant string kelp *Macrocystis pyrifera* was not observed at Eagle Rock during the monitoring period.

3.6.3 *Durvillaea potatorum*

The bull kelp *Durvillaea potatorum* is present in the vicinity of the monitoring sites, but not on the transect locations.

3.6.4 *Centrostephanus rodgersii*

The long-spined sea urchin *Centrostephanus rodgersii* is an eastern, warmer-water species. No *C. rodgersii* were observed during any of the Eagle Rock MS surveys.
Figure 3.17. Abundance and species richness of cold water, Maugean algal species inside and outside the Eagle Rock MS.
Figure 3.18. Abundance and species richness of cold water, Maugean fish species inside and outside the Eagle Rock MS.
3.7 Fishing

3.7.1 Abalone

The abundance of blacklip abalone *H. rubra* gradually increased inside the MS but not outside the MS following its declaration. Abundances peaked in 2009 with a subsequent rapid decline. This peak and decline was coincident with *Turbo undulatus* abundance, indicating the abundance changes may have been environmentally driven rather than changes in fishing pressure.

3.7.2 Rock Lobster

The sites at Eagle Rock were generally not on rock lobster habitat with few suitable crevices.

3.7.3 Fishes

The biomass of commonly fished fishes was generally low and variable inside and outside the Eagle Rock MS (Figure 3.19). There were no patterns or trends evident in the total size structure over time (Figures 3.20). The mean size of blue throated wrasse peaked in 2005 with subsequent lower and variable mean sizes (Figure 3.21).

3.8 Manufactured Debris

The 2015 survey was the first year to include manufactured debris at the Eagle Rock monitoring sites. No manufactured debris was observed at either site.
Figure 3.19. Total estimated biomass of fished species and estimated biomass of fished species over 200 mm inside and outside the Eagle Rock MS.
Figure 3.20. Size spectrum parameters for fished fish species inside and outside the Eagle Rock MS.
Figure 3.21. Mean size of blue-throat wrasse *Notolabrus tetricus* inside and outside the Eagle Rock MS.
4 Acknowledgements

This project was implemented by Parks Victoria. Supervision was by Dr Steffan Howe.

5 References

Parks Victoria is responsible for managing the Victorian protected area network, which ranges from wilderness areas to metropolitan parks and includes both marine and terrestrial components.

Our role is to protect the natural and cultural values of the parks and other assets we manage, while providing a great range of outdoor opportunities for all Victorians and visitors.

A broad range of environmental research and monitoring activities supported by Parks Victoria provides information to enhance park management decisions. This Technical Series highlights some of the environmental research and monitoring activities done within Victoria’s protected area network.

Healthy Parks Healthy People

For more information contact the Parks Victoria Information Centre on 13 1963, or visit www.parkweb.vic.gov.au